6 resultados para histone 2a gene

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of the historic H1 subtype, H1-1, in eight legumes belonging to four genera of the tribe Vicieae (Pisum, Lathyrus, Lens, and Vicia), revealed an extended region consisting of the tandemly repeated AKPAAK motifs. We named this region the Regular zone (RZ). The AKPAAK motifs are organized into two blocks separated by a short (two or six amino acids) intervening sequence (IS). The distal block contains six AKPAAK motifs, while the number of repeats in the proximal block varies from six in V. faba to seven in the other species. In V. hirsuta, the first two repeated units of the proximal block are octapeptides AKAKPAAK. The apparent rate of synonymous substitutions in the blocks of RZ is much higher than in the rest of the gene. This can be explained by repeat shuffling within each block. In the C-domain of the orthologous H1 subtype froth Medicago truncatula (tribe Trifolieae), a region corresponding to the RZ of Vicieae species was found. It also consists of two blocks of AKPAAK motifs (four and three repeats in the proximal and distal blocks, respectively). These blocks are separated by a 20-amino acid IS. The first 20 amino acids of the Medicago RZ are not part of AKPAAK repeats. We hypothesise that the RZ has most probably evolved as a result of an expansion of AKPAAK repeats from two separate sites in the C-domain. This process started tens of millions of years ago and was most likely directed by positive selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDACi) are a promising new class of chemotherapeutic drug currently in early phase clinical trials. A large number of structurally diverse HDACi have been purified or synthesised that mostly inhibit the activity of all eleven class I and II HDACs. While these agents demonstrate many features required for anti-cancer activity such as low toxicity against normal cells and an ability to inhibit tumor cell growth and survival at nanomolar concentrations, their mechanisms of action are largely unknown. Initially, a model was proposed whereby HDACi-mediated transactivation of a specific gene or set of genes was responsible for the inhibition of cell cycle progression or induction of apoptosis. Given that HDACs can regulate the activity of a number of nonhistone proteins and that histone acetylation is important for events such as DNA replication and mitosis that do not directly involve gene transcription, it appears that the initial mechanistic model for HDACi may have been too simple. Herein, we provide an update on the transcription-dependent and - independent events that may be important for the anti-tumor activities of HDACi and discuss the use of these compounds in combination with other chemotherapeutic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of many conventional chemotherapeutic drugs is often severely restricted due to dose-limiting toxicities, as these drugs target the destruction of the proliferating fraction of cells, often with little specificity for tumor cells over proliferating normal body tissue. Many newer drugs attempt to overcome this shortcoming by targeting defective gene products or cellular mechanisms that are specific to the tumor, thereby minimizing the toxicity to normal tissue. Histone deacetylase inhibitors are an example of this type of tumor-directed drug, having significant toxicity for tumors but minimal effects on normal tissue. These drugs can affect the transcriptional program by modifying chromatin structure, but it is not yet clear whether specific transcriptional changes are directly responsible for their tumor-selective toxicity. Recent evidence suggests that transcriptional changes underlie their cytostatic activity, although this is not tumor-selective and affects all proliferating cells. Here we present evidence that supports an alternative mechanism for the tumor-selective cytotoxicity of histone deacetylase inhibitors. The target is still likely to be the chromatin histones, but rather than transcriptional changes due to modification of the transcriptionally active euchromatin, we propose that hyperacetylation and disruption of the transcriptionally inactive heterochromatin, particularly the centromeric heterochromatin, and the inability of tumor cells to cell cycle arrest in response to a specific checkpoint, underlies the tumor-selective cytotoxicity of these drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Testisin gene (PRSS21) encodes a glycosylphosphatidylinositol (GPI)-linked serine protease that exhibits testis tissue-specific expression. Loss of Testisin has been implicated in testicular tumorigenesis, but its role in testis biology and tumorigenesis is not known. Here we have investigated the role of CpG methylation in Testisin gene inactivation and tested the hypothesis that Testisin may act as a tumour suppressor for testicular tumorigenesis. Using sequence analysis of bisulphite-treated genomic DNA, we find a strong relationship between hypermethylation of a 385 bp 50 CpG rich island of the Testisin gene, and silencing of the Testisin gene in a range of human tumour cell lines and in 100% (eight/eight) of testicular germ cell tumours. We show that treatment of Testisin-negative cell lines with demethylating agents and/or a histone deacetylase inhibitor results in reactivation of Testisin gene expression, implicating hypermethylation in Testisin gene silencing. Stable expression of Testisin in the Testisin-negative Tera-2 testicular cancer line suppressed tumorigenicity as revealed by inhibition of both anchorage-dependent cell growth and tumour formation in an SCID mouse model of testicular tumorigenesis. Together, these data show that loss of Testisin is caused, at least in part, by DNA hypermethylation and histone deacetylation, and suggest a tumour suppressor role for Testisin in testicular tumorigenesis.